Pathophysiology of focal dystonia

why do people get cranial dystonia or blepharospasm?

Allan D. Wu, MD
Associate Professor
Division of Movement Disorders Dept of Neurology, UCLA
Presentation at the Benign Essential Blepharospasm Research Foundation Symposium
held at University of California, San Diego
August 10, 2013
Disclosure

- All material presented is independent of and unrelated to industry
Summary of talk

- Dystonia pathophysiology is an active area of research
- Pathophysiology can be understood at different levels: genes, brain circuits, and motor behavior
- Understanding pathophysiology leads to development of novel therapies

- Dystonia is heterogeneous
- Not all dystonia is the same (even if it can look similar)
- Not all treatments work equally for all dystonia patients
- Can we tailor better treatments for patients?
Why do I have dystonia?

sustained muscle contractions, frequently causing appearance of twisting, repetitive, or patterned movements or postures (Fahn 1988)

Supportive signs of dystonia

1. sustained abnormal postures
2. task-specificity (action-specificity)
3. movement overflow (excess movements)
4. sensory trick (geste antagoniste)

Non-specific

1. worse with stress and fatigue, better with sleep
Dystonia classification

Anatomic distribution
- focal dystonia
- blepharospasm
- oromandibular dystonia
- spasmodic dysphonia
- cervical dystonia
- Meige syndrome
- writer’s cramp
- limb dystonia
- segmental dystonia
- multifocal dystonia
- generalized dystonia

Age of onset
- early-onset (<= 26 yo)
- late-onset (> 26 yo)

Cause
- primary dystonia (pure dystonia)
- secondary dystonia
 - dystonia-plus syndromes*
 - heredo-degenerative dystonia
 - identified secondary etiologies

*plus = plus other movement disorders

Geyer and Bressman, Lancet 2006
Dystonia - many causes, similar appearance

Jinnah et al, Dystonia Coalition, MDS 2011
Dystonia - anatomy and circuits
Pathophysiology of dystonia I: Loss of inhibition

- May account for excess muscle contraction and motor overflow seen clinically
- Can be demonstrated in cortical, subcortical, and spinal circuits are reduced (intracortical circuits, blink reflex, reciprocal inhibition)
- Abnormalities can exist in limb muscles distant from dystonia and are not always specific (Quartarone et al 2008, 2010)
Blink reflex
Blink reflex
Blink reflex

superimposed EMG traces

- Right OO emg (0.1 mV)
 - Time (sec): 0.05 to 0.2
 - Peak R2

- Left OO emg (0.1 mV)
 - Time (sec): 0.05 to 0.2
 - Peak R1 and R2

rectified and averaged EMG traces

- Right OO emg (0.1 mV)
 - Time (sec): 0.05 to 0.2
 - Rectified R2

- Left OO emg (0.1 mV)
 - Time (sec): 0.05 to 0.2
 - Rectified R1 and R2
Paired-pulse supraorbital nerve stimulation tends to show disinhibition in blepharospasm patients
Paired-pulse supraorbital nerve stimulation tends to show disinhibition in blepharospasm patients.
Blepharospasm patient

Control subject
Loss of inhibition

• In majority of studies, blink reflex recovery (BRR) shows loss of an inhibitory circuit in the blink reflex.
 • Suggests blepharospasm patients have an increased excitability of this brainstem blink circuit
 • Relates to tendency for a given stimulus to induce a reflex blink
 • May contribute to excess blinking or sustained eye closure
• May distinguish certain forms of blepharospasm from atypical forms (Schwingenschuh et al 2011)
Dystonia pathophysiology II: Sensory processing abnormalities

- Sensory afferent information directs goal-directed movement
- Sensory abnormalities often present in blepharospasm: dry eye, photophobia
- May account for sensory tricks (geste antagoniste)

Hallett, Ann Neurol 1995
Dystonia pathophysiology II: abnormal plasticity

Exaggerated plasticity is suggested by overuse phenomena (e.g. musician's cramp)

Excess plasticity may contribute to disinhibition and/or sensorimotor integration abnormalities
Plasticity

• Plasticity
 – Capacity for change in response to an experience
 – Long-term potentiation (LTP) & long-term depression (LTD)
 • forms of plasticity recognized by relatively long-lasting changes in a neural circuit
 • Balance of LTP and LTD thought required for adequate learning and forgetting
 – Plasticity can be beneficial (adaptive) or maladaptive
 • adaptive plasticity - supports changes that aid a goal-directed behavior
 • maladaptive plasticity - generates changes that interfere with goal-directed behavior
Spike-timing plasticity

- A and B represent a standard neuron connection (like a blink reflex)
- Strength of connect between A and B
 - increases if Z fires in sync with A
 - weakens if Z first out-of-sync with A
Spike-timing conditioning of blink reflexes can produce LTP-like and LTD-like responses.

Mao & Evinger 2001
Spike-timing conditioning of blink reflexes shows exaggerated LTP-like response in blepharospasm

Mao & Evinger 2001

Dystonia - putting it together
sensory inputs
sensory states
(trigeminal, auditory, visual, pain)

LOCAL BRAINSTEM BLINK CIRCUIT

Brainstem afferent input

LTD(-)/LTP(+)

Blink GAIN

BLINK of eyelids

Brainstem efferent output

DURING

BEFORE
Example systems-level model of blepharospasm

- Reduced midbrain dopamine increases blink reflex excitability
- Weakening of orb. oculi muscle then

Schicatano, Basso & Evinger 1997
sensory inputs
sensory states
(trigeminal, auditory, visual, pain)

Brainstem afferent input

Blink GAIN

Brainstem efferent output

Basal ganglia & prefrontal ctx

Cerebellum

HABITUATION

GAIN ADAPTATION & CONDITIONING

LOCAL BRAINSTEM BLINK CIRCUIT

BLINK of eyelids

LTD(-)/LTP(+)

(-)habituate

(+)=dishabituate

(+)=adapt/inc gain [decondition/dec gain (-)]
Treatments based on dystonia pathophysiology

- Reduce excess excitability (improve inhibition)
 - *Neuromodulatory protocols (see below)*
 - botulinum toxin
- Improve sensorimotor integration (via afferent inputs)
 - Sensory perceptual training (Zeuner et al 2002)
 - Tinted glasses (Herz and Yen 2005), novel tear films (Hallett et al 2008)
- Address abnormal pattern induced by abnormal plasticity
 - Re-training protocols (sensory training, immobilization)
 - *Neuromodulatory protocols*
 - low-frequency rTMS
 inhibitory theta-burst TMS,
 cathodal TDCS (Kranz et al 2009, 2010)
 - trigeminal nerve stimulation

Priori et al, Neurol 2001
Take home

• Pathophysiology of blepharospasm (focal dystonia) can be understood at many levels: genetic, circuits, or systems

• Circuits: Blepharospasm neurophysiology shows
 • Loss of inhibition,
 • Abnormal sensory processing,
 • Excess plasticity

• Systems related to blepharospasm (focal dystonia) implicate
 • Increased excitability and plasticity of the blink reflex
 • Influences from the basal ganglia (dopamine system)
 • Possible influences from the cerebellum

• Therapies based on neurophysiology are being developed and studied
 • Novel rehabilitation training programs (sensorimotor tuning)
 • Methods to reduce or balance excess plasticity